Engineering with Nature: Breakwaters for the creation of Submerged Aquatic Vegetation (SAV) habitat

SAV - flowering, rooted aquatic (submersed) plants One of the most important coastal habitats.

SAV have been disappearing at an alarming rate. Causes: eutrophication = lack of light.

Another cause of water turbidity: shoreline erosion

But not all sediments are equal. Sediment type being eroded matters!

Erosion of mud leads to higher turbidity - bad for SAV. Erosion of sand - to a certain extent, good for SAV

Mason Neck State Park, Potomac River

Cook's Point, Choptank River

SAV need > 65% sand, < 5% organic matter

Observed data
 Predicted
 R² = 0.98855545
 Equation %Total Area = 96.31(1-e^{-0.07526(%Silt + Clay)})

Sand is of the essence in the creation of viable SAV habitat!

Can breakwaters create suitable SAV habitat?

ages from 0 to 20 yrs old

Learning from nature: what is the right sediment accumulation rate to create SAV habitat?

Estuaries and Coasts DOI 10.1007/s12237-012-9542-7

Sediment Accumulation Rates and Submersed Aquatic Vegetation (SAV) Distributions in the Mesohaline Chesapeake Bay, USA

Cindy M. Palinkas · Evamaria W. Koch

Depositional rates > 9 mm/yr are beneficial for SAV

Conclusions

Breakwaters can sustain SAV populations as long as some habitat requirements are met:

- Water quality regional water quality needs to be good enough to support SAV growth
- Water depth deep enough so SAV can remain submersed at low tide
- ■Sediment needs to remain sandy (<35% silt+clay) with low organic matter (<5 to 8% organic matter) over time. Sedimentation rates >9mm/yr are also beneficial but no infilling (habitat becomes intertidal)
- Fetch breakwaters are most beneficial to SAV in long fetch areas (> 10 km)

Management Recommendations breakwater construction for SAV conservation and/or restoration

Management Recommendations breakwater construction for SAV conservation and/or restoration

Shoreline characteristics also need to be considered:

Eroding Marshes a layer of sand* needs to be added to cover the marsh peat in the sub-tidal (*>2cm, Wicks et al. 2009)

Sandy Beach breakwater beneficial to SAV especially when fetch > 10 km

• Cliffs - base of cliff needs to be stabilized to reduce sediment input and shoaling breakwaterprotected area

Questions for Evamaria Koch?

koch@umces.edu

Learning from nature: what is the right sediment accumulation rate to create SAV habitat?

